Altered synaptic dynamics and hippocampal excitability but normal long-term plasticity in mice lacking hyperpolarizing GABA A receptor-mediated inhibition in CA1 pyramidal neurons.
نویسندگان
چکیده
GABA(A) receptor (GABA-AR)-mediated inhibition is critical for proper operation of neuronal networks. Synaptic inhibition either shifts the membrane potential farther away from the action potential firing threshold (hyperpolarizing inhibition) or via increase in the membrane conductance shunts the excitatory currents. However, the relative importance of these different forms of inhibition on the hippocampal function is unclear. To study the functional consequences of the absence of hyperpolarizing inhibition, we have used KCC2-deficient mice (KCC2hy/null) maintaining only 15-20% of the neuron-specific K-Cl-cotransporter. Gramicidin-perforated patch-clamp recordings in hippocampal CA1 pyramidal cells revealed that the reversal potential of the GABA-AR-mediated postsynaptic currents (E(GABA-A)) was approximately 20 mV more positive in KCC2hy/null mice than in wild-type (WT) animals. The basic glutamatergic transmission appeared unaltered in the KCC2hy/null mice, yet they displayed lowered threshold for stimulation-induced synchronous afterdischarges in the CA1 area. Also fatigue of field excitatory postsynaptic potentials/excitatory postsynaptic currents in response to repetitious stimulation was smaller in KCC2hy/null mice, indicating altered synaptic dynamics. Interestingly, this effect was present also under blockade of GABA-ARs and was dependent on the extracellular K+ concentration. Moreover, there were no differences in the levels of either long-term potentiation or long-term depression between the genotypes. The local hippocampal CA1 network can in several aspects maintain its functional viability even in the absence of hyperpolarizing inhibition in pyramidal cells. Our results underscore the central role of shunting type of inhibition in controlling the neuronal excitation/inhibition balance. Moreover, our data demonstrate a novel, unexpected role for the KCC2, namely the modulation of properties of glutamatergic transmission during repetitious afferent activity.
منابع مشابه
Altered synaptic dynamics and hippocampal excitability but normal long-term plasticity in mice lacking hyperpolarizing GABAAR-mediated inhibition in CA1 pyramidal neurons
GABA A receptor-mediated inhibition is critical for proper operation of neuronal networks. Synaptic inhibition either shifts the membrane potential farther away from the action potential firing threshold (hyperpolarizing inhibition), or via increase in the membrane conductance shunts the excitatory currents. However, the relative importance of these different forms of inhibition on the hippocam...
متن کاملDopamine inhibits high-frequency stimulation-induced long-term potentiation of intrinsic excitability in CA1 hippocampal pyramidal neurons.
The efficiency of neural circuits is modified by changes not only in synaptic strength, but also in intrinsic excitability of neurons. In CA1 hippocampal pyramidal neurons, bidirectional changes in the intrinsic excitability are often presented after induction of synaptic long-term potentiation or depression. This plasticity of intrinsic excitability has been identified as a cellular correlate ...
متن کاملAlterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice.
Endocannabinoid (eCB) signaling is tightly regulated by eCB biosynthetic and degradative enzymes. The eCB 2-arachidonoylglycerol (2-AG) is hydrolyzed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB signaling, synaptic function, and learning behavior were altered in MAGL knock-out mice. We report that MAGL⁻/⁻ mice exhibited prolonged depolarization-induced suppress...
متن کاملMajor role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability.
Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABA(A) inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices....
متن کاملDevelopment of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons.
Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 99 6 شماره
صفحات -
تاریخ انتشار 2008